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Novel mechanism for discrete scale invariance in sandpile models

M.W. Lee1 and D. Sornette1,2,3,a

1 Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90095, USA
2 Department of Earth and Space Science, University of California, Los Angeles, California 90095, USA
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Abstract. Numerical simulations and a mean-field analysis of a sandpile model of earthquake aftershocks
in 1d, 2d and 3d Euclidean lattices determine that the average stress decays in a punctuated fashion after
a main shock, with events occurring at characteristic times increasing as a geometrical series with a well-
defined multiplicative factor which is a function of the stress corrosion exponent, the stress drop ratio and
the degree of dissipation. These results are independent of the discrete nature of the lattice and stem from
the interplay between the threshold dynamics and the power law stress relaxation. This novel mechanism
of log-periodicity does not rely on a pre-existing discrete structural hierarchy of faults but is dynamical
and reflects the existence of an approximately fixed stress drop together with the scale-free stress corrosion
power law acting during inter-seismic phases.

PACS. 02.50.Ey Stochastic processes – 64.60.Ht Dynamic critical phenomena – 91.30.Px Phenomena
related to earthquake prediction

Discrete scale invariance (DSI) [1] is the partial break-
ing of continuous scale invariance [2] in which a system or
an observable is invariant only under scaling ratios that
are integer powers of a fundamental factor λ. DSI leads
to complex critical exponents (or dimensions), i.e. to log-
periodic corrections to scaling, which reflect the existence
of a discrete self-similar spectrum of characteristic scales
decorating the usual scale-free power law behavior.

Several mechanisms responsible for this partial break-
ing of the continuous scale symmetry have been ex-
pounded, which include build-in pre-existing hierarchy [3],
intermittent diffusion in discrete Euclidean lattices [4] and
cascades of ultra-violet instabilities in growth processes
and rupture [5]. Other situations are less well understood
but can be traced back to special technical properties such
as the non-unitary structure of the underlying field theory
describing the coarse-grained properties of animals [6] and
of quenched disordered spin systems with long-range inter-
actions [7]. Another example is the gravitational collapse
leading to critical black hole formation described by a sys-
tem of partial differential equations possessing an asymp-
totic solution which can be understood from a renormal-
ization group with a limit cycle having a single unstable
mode [8].

Here, we present a novel scenario for DSI based on
the interplay between the threshold dynamics charac-
teristic of sandpile models and a scale-free relaxation
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process [9]. Specifically, we study a conceptual sandpile
model [10] of earthquake aftershocks on a Euclidean dis-
crete d-dimensional cubic lattice with Ld cells and periodic
boundary conditions with d = 1, 2, 3. Our use of periodic
boundary and our claim that our results are independent
of the boundary conditions may seem surprising since it is
well-known [11] that the stationary state of the “loading
phase” depends strongly on the boundary conditions, e.g.
for open boundary conditions, the stationary state is in a
self-organised critical state, whereas this is not the case
for a periodic boundary condition. The upshot is that the
discrete scale invariance and associated log-periodic be-
havior that we document below are independent of the
initial loading and of the nature of boundary conditions,
making our results actually independent to any presence
of self-organized criticality. Due to the nature of the re-
laxation process and of the stress transfer, the relaxation
rates are modified significantly only at the edges of a rup-
tured region. This local process lessens the difference be-
tween open and closed boundary conditions. Our use of
periodic boundary conditions in most of our simulations is
performed in order to bring our system faster to the “ther-
modynamic limit” (finite-size effects are smaller) than in
models using open boundary conditions.

The system is assumed to be paved of “elementary”
faults, one in each cell. An elementary fault is the min-
imum fault element activated during an event. Each cell
represents a region which is unloaded when an elemen-
tary fault is activated. We neglect the tensorial nature
of the stress field and consider an anti-plane driving
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configuration (anti-plane is also called mode III corre-
sponding to a stress field having only two non-vanishing
stress components σxy and σyz) in which loading and rup-
ture are controlled by a single shear (vertical) force compo-
nent V (x) (recall that mode I is crack opening in tension,
mode II is crack shearing along the long axis of the crack
and mode III is crack shearing perpendicular to it [12]).

There are two distinct temporal phases. First, the
stress is uniformly increased at a very slow rate on all cells
to mimic the tectonic loading. Due to the rupture and
loading rules described below, the system self-organises
into a statistical stationary state, characterised by a power
law distribution of event sizes [9,10]. Once this statistical
stationarity state is established, we freeze the loading and
the aftershock sequence starts, mimicking the aftermath
of a great earthquake. The second phase is characterised
by the fact that the aftershocks are not driven by the tec-
tonic loading but by relaxation processes as described be-
low. We obtain similar results without the initial loading
phase. Thus our results are not dependent on the presence
or absence of self-organized criticality typically associated
with loading phases such as this.

An initial stress threshold B(x) is assigned to each
cell from a random uniform distribution in the interval
B0[1 − r, 1 + r]. We find similar results both for the an-
nealed and quenched version of the model, in which either
the thresholds are fixed or are resampled in the interval
after each rupture. When the stress V (x) in a cell at x be-
comes larger or equal to B(x), the stress is re-distributed
according to the rules

V (x)|after = V (x)|before(1− γ), (1)

V (x)|after
nn = V (x)|before

nn + V (x)|before (1− β)γ
2d

· (2)

Rule (2) applies to each of the 2d nearest neighbours (n.n.)
of x carrying an initial stress V (x)|before

nn which evolves into
V (x)|after

nn . Because the toppling criterion (1) depends only
on V and not on its gradient, the order of site toppling
commute [13] but only in the case β = 0.

γ is the relative stress drop, with γ = 1 corresponding
to a complete stress drop. β is the dissipation where 1−β
quantifies the amount of stress drop transfered to n.n. and
is known as the seismic efficiency. For γ = 1, (1, 2) are
identical to the rules used in the non-conservative sandpile
model [14], motivated from the coupling of blocks to a
rigid upper driving plate in the Burridge-Knopoff model.
Here, the dissipation accounts for the loss of stress and of
stored elastic energy due to an earthquake under constant
displacement conditions at the boundaries [15].

In the second relaxation phase, the loading stops and
the thresholds decay in time according to the law

B (x, t) = B (x, t0)− [V (x, t)]α

B (x, t0)
(t− t0) . (3)

This model incorporates the mechanism of sub-critical
crack growth and stress corrosion [16], which has been
proposed as a possible delay mechanism for aftershocks
[9,17,18]. The above form was derived from the equa-
tions of sub-critical crack growth as part of a complete

model of aftershocks presented elsewhere [9]. In the ab-
sence of loading, events are triggered each time the thresh-
olds decay below the local stresses. When this occurs, the
stress redistribution obeys (1, 2). The system eventually
relaxes after an infinite time and in an intermittent man-
ner to an equilibrium of zero stress on all elements of the
lattice. Contrary to the results of sandpile models [11],
a closed conservative spring-block system has also been
found to relax in a infinite time and in an intermittent
manner to the zero-stress equilibrium with self-organized
critical behavior [20]. It is this complex relaxation that we
study. It occurs via the triggering of what can be called
aftershocks which exhibit remarkable properties. The re-
sults presented below are also found for a version of the
model with continuous elasticity [9,21] derived from refer-
ence [19] and are probably robust features of the general
interplay between threshold dynamics and relaxation phe-
nomena.

We have checked that our results are robust with re-
spect to the choice of the power law relaxation rate (3): if
one slightly changes the functional form for the stress re-
laxation, one still obtain an approximate Omori’s law with
log-periodicity and discrete scale invariance. There will
however be higher order corrections, i.e. log-periodicity
will come with several harmonics of decreasing ampli-
tudes. We stress that the main message is not Omori’s
power law relaxation but the fact that there is a spon-
taneous breaking of the continuous scale invariance sym-
metry into a discrete scale invariance due to the interplay
with the threshold dynamics.

We show here mostly the simulations for 2d systems of
20 × 20 elements (simulations have been performed with
size up to 100× 100 with no change of results) and in the
annealed case where, after each toppling, thresholds are
reassigned from the uniform distribution B0[1 − r, 1 + r]
with r = 0.75. The system is up-dated by finding the site
closest to rupture and incrementing time, so that this site
reaches its threshold. Once a site becomes unstable due
to either loading (in the first phase) or by the decay of
the threshold (in the second phase), stress is distributed
to n.n. according to (1, 2). The n.n. may also become
unstable, releasing their stress and the process continues
until no further nodes are unstable, thus defining an event.
During the rupture process, time is “freezed” to ensure a
separation of time scales between rupture (fast) and load-
ing/decay (slow). When no further sites are unstable, load-
ing or decay is continued until the next event, when time
“freezes” again. Typically 3× 103 to 15× 103 events were
sampled in the decay regime. The results are robust with
respect to heterogeneity level r, open or closed boundary
conditions, and to the size and dimension d = 1, 2, 3 of the
lattice.

Figure 1 shows the rate of aftershocks n (t) as a func-
tion of time after the loading has ceased. The 1/t decay
is in full agreement with Omori’s law for real aftershock
sequences [22] and is very robust over a wide range of pa-
rameters, i.e. α > 0, γ > 0 and β < 1. Typical values
for the earth are 10 ≤ α ≤ 100, γ ≈ 5−15% (stress drop)
and β ≈ 99% (corresponding to a seismic efficiency of
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Fig. 1. Power law decay of the rate of aftershocks for a lattice
of size 20 × 20 with α = 1, γ = 1 and β = 0.5. The solid line
is t−1.

1%). The distribution of event sizes also follows a power
law (Gutenberg-Richter for aftershocks), but in contrast
to Omori’s law, the exponent continuously depends on the
three parameters. Furthermore, for large dissipation β, the
power law extends only up to a maximum scale which de-
creases as β → 1. This feature has also been observed for
real earthquakes where the biggest characteristic earth-
quakes are thought to belong to a different class [23].

These results can be rationalized by the following mean
field theory. From (3), we see that the time ∆t needed
for an isolated element to reach rupture is such that the
threshold B (x, t0 +∆t) decreases to the stress level V (x).
The mean field argument simply assumes that we can ex-
tend this result over all elements of the lattice by replacing
V (x) by the average stress 〈V (t)〉x accounting for the in-
fluence of the possible loading by n.n. This approximation
becomes better and better as the dissipation β increases
and the dynamics of n.n. elements becomes increasingly
uncoupled. This corresponds to a decreasing dependence
on spatial inhomogeneities, which is exactly the underly-
ing assumption of any mean-field approximation. We get

∆t ≈ B2
0/ 〈V 〉

α
x , (4)

where we have approximated B0 − 〈V 〉x by B0, since for
large times the mean stress level becomes very low com-
pared to the thresholds that are healed back to a typical
value in the interval B0[1− r, 1 + r] after each event. Ex-
pression (4) has the same form as obtained from a model of
cracks undergoing sub-critical crack growth [9]. Over such
a time interval, essentially one main event occurs on each
site and, as a consequence, the average stress goes from
〈V 〉x to (1 − γ) 〈V 〉x, corresponding to a typical stress
decrease γ 〈V 〉. We can thus write

d 〈V 〉x
dt

∼ −γ 〈V 〉x
∆t

≈ − γ

B2
0

〈V 〉1+α
x , (5)

whose solution is

〈V (t)〉x = (B2
0/αγ)1/α(t+ c)−1/α. (6)

c is a constant determined from the initial value of the
average stress at the beginning of the aftershock relaxation
sequence.

To get Omori’s law, we recognise that the rate n(t) of
aftershocks is simply proportional to the rate with which
the thresholds B (x, t) reach the stress level. n(t) is also
proportional to 1/∆t. This yields

n(t) ∝ dB (x, t)
dt

∼ [V (x, t)]α ∼ [〈V (t)〉x]α ∼ 1
(t+ c)p

,

with p = 1. (7)

According to this mean field theory, Omori’s law is ob-
tained with the universal exponent p = 1 independently
of the value of the stress-corrosion exponent α, as long as
it is positive. For α = 0, the average stress level decays
exponentially fast with time and the rate of aftershocks is
constant.

The mean field theory also provides a prediction of
log-periodicity. The stress redistribution laws (1, 2) imply
that, over a typical time ∆t given by (4), the average stress
undergoes the change 〈V 〉x → 〈V 〉x /µ, where

1/µ = [f(d)(1− γ) + neffγ(1− β)] /f(d). (8)

f(d) is a geometric factor counting the effective number of
n.n. (f(d) = 2d in the large dissipation limit β → 1). The
first contribution (1− γ) in the r.h.s. of (8) is simply the
initial stress minus the stress drop. The second contribu-
tion neffγ(1−β)/f(d) results from the number neff ∼ 1 of
stress loading on a given element due to the earthquakes
occurring on its neighbours.

Each time the average stress is decreased by a factor
µ, we see from (4) that the time interval ∆t is increased
by a factor

λ = µα. (9)

Since µ > 1, the total time is essentially dominated by the
last time interval between the two last cycles. This allows
us to write an approximate scaling relation on the average
stress 〈V 〉:

〈V (t)〉x = µ 〈V (λt)〉x . (10)

Since the aftershock rate n(t) is proportional to 〈V 〉αx , this
leads to

n(t) = λn(λt), (11)

using (9). Looking for a power law solution n(t) ∼ t−p, we
retrieve Omori’s exponent p = 1. A more general solution
is the power law t−1 multiplied by a periodic function of
ln t,

n(t) = t−1P1(ln t/ lnλ), (12)

where P1(x) is periodic with period one. Expanding this
periodic function into its Fourier series gives

n (t) = t−1
+∞∑

k=−∞
akt

i2πk/lnλ, (13)
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Fig. 2. Local exponent p(t) for α = 1, γ = 1, β = 0.999. The
window size is 100 events.

with a−k = ak, which defines the discrete spectrum of
complex exponents pk = 1− i2πk

lnλ . The leading correction
to the power Omori’s law gives the log-periodic expression

n (t) =
1
t

(
a0 + a1 cos

(
2π

ln t
lnλ

))
. (14)

To test this prediction, we find that the local exponent
p(t), defined by d lnn (t) /d ln t = −p (t), gives the most
sensitive measure of deviation from the 1/t Omori’s law.
We estimate p(t) by a maximum likelihood estimator in a
running window ending at t [9]. Defining the starting t and
ending tU times of a window and the average 〈ln ti〉 of the
logarithms of all N aftershock times within this window,
the MLE is

p(t) ≈ 12
ln
√
ttU − 〈ln ti〉)

(ln(tU/t))2 + 1
, (15)

with a variance

σ2 ≈ 12 (N − 1)−1 (ln(tU/t))−2. (16)

The estimation of p(t) is very robust over a large set of
window sizes and have been tested thoroughly on synthetic
Omori’s laws [24].

Figure 2 shows the local exponent p (t) as a function of
time t estimated using a window size of 100 events. Clear
log-periodic oscillations around p ≈ 1 can be identified
with a (log-)frequency of ≈ 0.12 giving a preferred scale
factor λ ≈ 3500 in reasonable agreement with the theo-
retical value of 4000 calculated from (8, 9). Increasing the
window size with t or keeping a window with size fixed in
time provides the same estimate.

Figure 3 presents p(t) for the stress corrosion exponent
α ≈ 25, a value estimated from a set of adjacent time-
delayed multiple events in western Japan [18], for a stress
drop γ = 5% and a seismic efficiency of 1%, i.e. β = 0.99.
The measured scaling factor is now λ = 3.5 while the mean
field prediction is λ = 3.6.

The comparisons between the numerical simulations
and the predictions of the mean field theory are presented
in Figures 4–6. The mean field theory, while not perfect,
accounts well for most of the behavior. Results for a lat-
tice size of 50× 50 are added in Figure 4 to illustrate the
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Fig. 3. p-value as a function of time for the case of α = 25, γ =
0.05, β = 0.99. The window size is 150 events.
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Fig. 4. Scaling factor λ as a function of stress drop γ for
β = 0.999 and α = 1.
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Fig. 5. Scaling factor λ as a function of β for α = 1 and γ = 1.

independence on lattice size. Other simulations have been
performed with sizes up to 100 × 100 with the same re-
sults. We also have checked that λ depends on the space
dimension d for d = 1, 2, 3 as predicted from (8, 9).

Discrete scale invariance and its log-periodic signature
is associated in this model with the threshold nature of the
dynamics. The discrete scaling emerges from the fact that
the thresholds are healed back to a value close to B0 after
each rupture and then have to decay down to the cur-
rent stress threshold to trigger the next rupture. When
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Fig. 6. Scaling factor λ as a function of α for β = 0.99 and
γ = 1.

this occurs, the stress jumps to a smaller value by a fi-
nite amount and can also later be reloaded again by ac-
tive neighbours. It is fundamentally these finite jumps in
the stress proportional to the current stress (which are
thus scale-free) which are at the origin of discrete scale in-
variance and log-periodicity. This novel mechanism of log-
periodicity does not rely on a pre-existing discrete struc-
tural hierarchy of faults but is dynamical and reflects the
existence of an approximately fixed stress drop together
with the scale-free stress corrosion power law acting dur-
ing inter-seismic phases.

This study suggests to search for log-periodic sig-
natures in real aftershock sequences, with the potential
bonus that log-periodicity would constrain the stress drop
ratio, an elusive quantity to estimate by direct seismic
measurements. A systematic analysis on more than thirty
large aftershock sequences found log-periodicity [9] but
was unable to conclude decisively on the mechanism pro-
ducing this log-periodicity [24], due to a noise level which
is comparable to the amplitude of the signal. Further stud-
ies are thus called for.

We are especially grateful to A. Johansen and L. Knopoff for
very stimulating discussions. M.L. thanks the Physics depart-
ment at UCLA for hospitality.
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